A Space-time Fem for Pdes on Evolving Surfaces
نویسندگان
چکیده
The paper studies a finite element method for computing transport and diffusion along evolving surfaces. The method does not require a parametrization of a surface or an extension of a PDE from a surface into a bulk outer domain. The surface and its evolution may be given implicitly, e.g., as the solution of a level set equation. This approach naturally allows a surface to undergo topological changes and experience local geometric singularities. The numerical method uses space-time finite elements and is provably second order accurate. The paper reviews the method, error estimates and shows results for computing the diffusion of a surfactant on surfaces of two colliding droplets.
منابع مشابه
Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces
In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations (PDEs) posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time–continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface fi...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces
In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time – continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite ...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کامل2D wave-equation migration by joint finite element method and finite difference method
A new method of migration using the finite element method (FEM) and the finite difference method (FDM) is jointly used in the spatial domain. It has been applied to solve a time relay 2D wave equation. By using the semi-discretization technique of FEM in the spatial domain, the origin problem can be written as a coupled system of lower dimensions partial differential equations (PDEs) that conti...
متن کاملA Volume Mesh Finite Element Method for Pdes on Surfaces
We treat a surface finite element method that is based on the trace of a standard finite element space on a tetrahedral triangulation of an outer domain that contains a stationary 2D surface. This surface FEM is used to discretize partial differential equation on the surface. We demonstrate the performance of this method for stationary and time-dependent diffusion equations. For the stationary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014